找回密码
 立即注册
科技快报网 首页 科技快报 业界资讯 查看内容

苹果iPhone上搭载的那颗A11芯片 到底牛气在哪?

2017-09-20 15:14:33

苹果iPhone上搭载的那颗A11芯片 到底牛气在哪?

 

与此同时,iPhone X还具备眼球追踪功能,在你面对屏幕,但是眼睛没有看着它的时候,也是不会解锁的。所以,这样的人脸解锁是照片骗不了的。

而且,苹果的软件工程高级副总裁Craig Federighi曾表示,“我们不会在用户注册Face ID时收集数据,它会保留在你的设备上,不会被发送到云端进行训练。” 符合苹果一贯的“用户隐私为上”理念。

最为神奇的是,用户面容适应(化妆、佩戴眼镜、长胡子、随着年龄增长而变容改变等)过程需要用到的深度学习训练也是在本地完成的。深度学习分为训练(Training)和推理/应用(Inference)两部分,训练阶段所需的计算量比应用阶段的要大上许多。

另一方面,计算与训练的本地化也有助于让Siri变得更加智能。毕竟有不少人认为由于苹果对用户的隐私过于重视,导致Siri发展较慢,竞争对手们后来居上。

此外,在A11的加成下,iPhone X前头“刘海儿”实现的脸部追踪技术还可以用于个人定制化表情Animoji(能捕捉并分析 50 多种不同的肌肉运动)、AR滤镜等,新的互动的方式有望提高用户的参与度和粘性,提高AR社交平台的经济价值。而3D视觉所提供的景深信息和建模能力是现有普通摄像头无法比拟的。

而iPhone X还搭载了全新陀螺仪和加速计,刷新率达到60 fps,可以实现准确的动作追踪以及很好的渲染效果。在发布会上,苹果全球市场营销高级副总裁Phil Schiller是这么说的:“这是第一款真正为AR打造的智能手机。”

五、火热的AI芯片产业

当前人工智能芯片主要分为GPU、ASIC、FPGA。代表分别为NVIDIA Tesla系列GPU、Google的TPU、Xilinx的FPGA。此外,Intel还推出了融核芯片Xeon Phi,适用于包括深度学习在内的高性能计算,但目前根据公开消息来看在深度学习方面业内较少使用。

其中,苹果的A11、寒武纪的A1、谷歌的TPU等都属于ASIC,也就是专用集成电路。

ASIC(Application Specific Integrated Circuit)。顾名思义,ASIC就是根据特定的需求而专门设计并制造出的芯片,能够优化芯片架构,针对性的提出神经网络计算处理的指令集,因而在处理特定任务时,其性能、功耗等方面的表现优于 CPU、GPU 和 FPGA;但ASIC算法框架尚未统一,因此并未成为目前主流的解决方案。 

寒武纪1号神经网络处理器架构 谷歌ASIC产品探索

现有的ASIC包括谷歌的TPU、我国中科院计算所的寒武纪、应用于大疆无人机和海康威视智能摄像头的Movidius Myriad芯片、曾用于Tesla汽车自动驾驶和ADAS的Mobileye芯片等针对特定算法以及特定框架的全定制AI芯片。 

此外,更近一步的的AI芯片前景,大概是IBM的TrueNorth这类的类脑芯片(BPU)。类脑芯片的目的是开发出新的类脑计算机体系结构,会采用忆阻器和 ReRAM 等新器件来提高存储密度,目前技术远未成熟。

不同芯片在人工智能计算方面各有所强

结语:我们离手机AI芯片还有多远? 

在苹果的推动下,专用AI处理单元可能会越来越成为智能手机芯片的发展趋势。毕竟目前在生物识别、图形图像识别、用户使用习惯学习等方面都越来越依赖机器学习技术,而不太稳定的网络带宽(大家记不记得早期Prisma要等好久才能生成图片)、个人隐私、功耗比等问题也在驱动着手机芯片集成专用AI处理单元的发展。

总的来说,无论是A11还是之前的麒麟970,都是让AI在手机端开始由软到硬落地的表现,是人工智能进一步产业化落地的一个典型代表。

1234

  免责声明:本网站内容由网友自行在页面发布,上传者应自行负责所上传内容涉及的法律责任,本网站对内容真实性、版权等概不负责,亦不承担任何法律责任。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,并请自行核实相关内容。本站不承担此类作品侵权行为的直接责任及连带责任。如若本网有任何内容侵犯您的权益,请及时联系我们,本站将会在24小时内处理完毕。

发布者:admin

相关阅读

微信公众号
意见反馈 科技快报网微信公众号