背景
对于现在的黑少微服务(www.httpshop.com)架构的应用来说,对大量并发的及时响应是一项制胜能力。据用户行为分析平台统计,随行付的某一款APP产品每日请求就达到上千万次用户请求、加解密服务3000万次/日等等。这些微服务每时每刻在处理如此高强度的请求,对数据层的应对能力要求极高。如果我们把对速度的需求放在复杂的分布式数据架构背景下,是很难想象如何让应用应对如此巨大的数据访问量的。但很幸运,我们有方法做到。即立方体模型。 立方体模型 可扩展的分布式系统架构设计有一个朴素的理念,就是:通过加机器就可以解决容量和可用性的问题。 对于一个迅速增长的应用而言,容量和性能是首当其冲要面临的问题。但随着时间的向前推移、应用规模不断的快速增长,除了面对性能与容量的问题外,还需要解决功能与模块数量上增长带来的系统复杂性问题、业务变化带来的差异化服务问题等。而多数情况下应用设计之初出于诸多因素的考量,并没有充分考虑或在设计之初就将此类问题提上日程,导致系统的重构成为常态,从而影响业务交付能力。对此,「架构即未来」一书中提出了更加系统的可扩展模型,可扩展模型是一个富有启发性的方法,描述了微服务三个维度的扩展方法,可以通过它来了解微服务架构的扩展维度。 负载均衡 负载均衡是将用户的访问请求通过负载均衡器,均衡分配到由各个「复制品」组成的集群中去。当某个「复制品」出现故障,也能轻易地将相应「工作」转移给其它的复制品来「代为完成」。常用的硬件负载有F5、A10,软件负载Nginx。 这中间涉及到的技术点包括了反向代理、DNS轮询、哈希负载均衡算法(一致性哈希)、动态节点负载均衡(如按CPU,I/O)等。它的难点在于要求集群中的「复制品」是不共享任何内容,也就是我们常说的无状态。 数据复制 数据复制是指在数据存储层进行绝对平等地数据迁移,用于解决存储层I/O瓶颈以及可用性上的问题。有多个「复制品」存储,使得每个「复制品」提供无差异的数据服务,我们需要在「复制品」之间同步或异步的复制数据。 数据复制的方式包括了主从同步(读写分离)、双主同步等。因为数据存储天生就是有状态的,数据复制的难点在于如何保证一致性。为保证一致性,衍生了很多复杂的技术和中间件,比如Paxos选举算法、随行付Porter数据同步中间件等。 识别热点服务 多数情况下我们的应用中都会存在热点模块,我们可以理解为越基础的模块越容易成为热点模块。热点模块更加容易成为整个平台的瓶颈点,所以热点模块要尽早的采取扩展措施,扩展措施一般都采用X轴扩展方式。 前后端分离 其实在我们开发过程中,经常会给pc端、mobile、app端各自研发一套前端。其实对于这三端来说,大部分端业务逻辑是一样的。唯一区别就是交互展现逻辑不同。如果controller层在后端手里,后端为了这些不同端页面展示逻辑,分别维护这些controller,徒增和前端沟通端成本、在扩展性上面也不能达到很方便的扩展。前后端分离的好处在于:提升适配性、提升响应速度、提升性能、分离化部署。 在分布式服务设计领域,一个烟筒状就是满足某个分区所有业务操作的自包含闭环。如上面我们说到的Y轴扩展的微服务架构,客户端对服务端节点的选择一般是随机的,但是,如果在此加上Z轴扩展,那服务节点的选择将不再是随机的了,而是每个烟筒状自成一体。 数据分区 为了性能及数据安全考虑,我们将一个完整的数据集按一定的维度划分出不同的子集。 一个分区(Sharding),就是是整体数据集的一个子集。比如用尾号来划分用户,那同样尾号的那部分用户就可以认为是一个分区。数据分区为一般包括以下几种数据划分的方式:数据类型(如,业务类型)、数据范围(如,时间段、用户)、数据热度(如,用户活跃度)、按读写分(如,描述,库存) 当然,数据分区也是有代价的,它将增加数据运维的难度,关联搜索的复杂度增加等。 一个扩展性良好的系统,会充分考虑三个维度上的可扩展性,熟练运用三个维度的扩展性,使得系统性能改善上有更多的方向,但在系统性能优化上,代码层面、框架层面、设计层面也是更加的至关重要。 |
免责声明:本网站内容由网友自行在页面发布,上传者应自行负责所上传内容涉及的法律责任,本网站对内容真实性、版权等概不负责,亦不承担任何法律责任。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,并请自行核实相关内容。本站不承担此类作品侵权行为的直接责任及连带责任。如若本网有任何内容侵犯您的权益,请及时联系我们,本站将会在24小时内处理完毕。