Google 的 BERT 模型一经发布便点燃了 NLP 各界的欢腾,Google Brain 的资深研究科学家 Thang Luong 曾给出其“开启了 NLP 新时代”的高度定义,国内外许多公司及开发者对其进行了研究及应用,本文作者及其团队对 BERT 进行了应用探索。 随着 Google 推出的 BERT 模型在多种 NLP 任务上取得 SOTA,NLP 技术真正进入了大规模应用阶段,环信一直致力于帮助企业应用先进的AI技术提高生产效率,对于 BERT 的探索我们一直走在了行业前列。 训练模型
训练其他模型时我们已经标注了大量的训练数据,主要把相似句对分为三类来标注: 不相似(0)、相关(0.5)、相似(1) 所以,训练 BERT 模型时就可以“拿来主义”了。
我们的主要应用点是相似度计算,期望模型返回的结果是一个概率(分值)而不是每个类别的概率。当然如果模型给的结果是每一个类别的概率,依然可以通过加权求和输出一个分值,但这样是不是又复杂了。 所以我们在官方代码上做了点小的修改(将最后的 softmax 改为了 sigmoid)使得模型输出是一个分值,这个分值也就是我们要的相似度了。
我们使用之前标注的数据集在 GeForce GTX 1070 上训练(Fine-Tune),大概训练了 8 个小时左右。
模型训练完会产生几个 Checkpoint,这些 Checkpoint 是不能直接在工程中使用的,需要导出成 PB 文件,可以使用 Estimator 的 export_savedmodel 方法导出。 模型使用 通过调研,主要有两种方式:
这两种方式各有优缺点,我们主要考虑以下几个方面:
另外,方案 2 不仅支持多模型还支持多版本、模型的冷启动和热加载。综合考虑下,我们使用了方案 2 进行模型部署。 效果对比 我们用一些典型客户的数据构建了测试环境,抽取这些客户的真实访客数据,对现有模型和 BERT 模型做了对比实验,BERT 模型的效果相比于对照模型提高了超过 10%。 调用图 这是我们的调用时序图: FAQ 服务->相似度计算服务:句子 1 和 句子 2 相似度是多少 ? 这里抽象出一个相似度计算服务,是因为我们集成了多种相似度计算方法。 优化
这种模型的一个主要问题是:模型并不能完美解决所有问题,时不时总会有 bad case 出现。一旦模型上线,如果有问题我们无法及时解决(训练模型和上线都会消耗大量时间)。为此我们增加了后处理,以便于我们的训练师能够及时干预,解决问题。
BERT 预训练的模型使用的数据来源于维基百科,与我们的主要应用场景不一致。我们可以猜想如果在 BERT 原有 Pre-Training 模型的基础上,使用客服里的数据再次进行 Pre-Training 应该会更好,事实上我们也的确这样做了。结论是影响不大,可能是数据不够多,新的训练实验还在进行中。
GPT 2.0 的出现再次证明了要想得到好的模型,不仅要有数据量,还要提高数据的品质。我们新的标注也在进行中,相信会对模型效果有所提高。
我们在产品中还提供了意图识别的服务,意图识别服务要求必须能够在线训练。如果直接使用 BERT 来做意图识别,很难满足在线训练的要求(BERT 训练太慢了)。为此我们使用了简单的模型来支持在线训练,并把 Fine-tune 模型的倒数第二层作为特征,增强意图识别的效果。 BERT 的近邻 最近 Google 又携 XLnet 屠榜了,从实验效果看对比 BERT 确实有比较大的提升,我们也在关注中,实验的小手已经蠢蠢欲动了。如果在我们的场景实验效果好的话,相信我们环信的客户很快便会体验到。 |
免责声明:本网站内容由网友自行在页面发布,上传者应自行负责所上传内容涉及的法律责任,本网站对内容真实性、版权等概不负责,亦不承担任何法律责任。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,并请自行核实相关内容。本站不承担此类作品侵权行为的直接责任及连带责任。如若本网有任何内容侵犯您的权益,请及时联系我们,本站将会在24小时内处理完毕。